ISOLATION OF A NEW INDOLE ALKALOID, PENDOLMYCIN, FROM NOCARDIOPSIS

Takashi Yamashita, Masaya Imoto, Kunio Isshiki, Tsutomu Sawa, Hiroshi Naganawa, Shogo Kurasawa, Bao-Quan Zhu, ¹ and Kazuo Umezawa*

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

ABSTRACT.—A new indole alkaloid, pendolmycin [1], was isolated from *Nocardiopsis* strain SA1715 as an inhibitor of epidermal-growth-factor-induced phosphatidylinositol turnover in A431 cells. The structure of pendolmycin is closely related to that of teleocidin B [2] and of lyngbyatoxin A [3]. Pendolmycin may be a biosynthetic intermediate of these alkaloids.

In the course of screening for inhibitors of epidermal-growth-factor (EGF)-induced phosphatidylinositol turnover, we have isolated a new indole alkaloid from a strain of *Nocardiopsis*, which we named pendolmycin [1]. We report here the isolation, purification, and structure determination of this compound and show that it is structurally closely related to the indole alkaloids, teleocidin B [2] and lyngbyatoxin A [3].

Teleocidin B was isolated in 1960 from a *Streptomyces* species (1), and lyngbyatoxin A was isolated in 1979 from the lipid extract of an Hawaiian shallow-water variety of *Lyngbya majuscula* Gomont (2). Both teleocidin B and lyngbyatoxin A exhibit irritant toxicity, which is also seen with pendolmycin.

¹Permanent address: Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai, China.

RESULTS AND DISCUSSION

A culture filtrate of a strain of an actinomycete showed strong inhibition of EGF-induced phosphatidylinositol turnover in A431 cells. The microorganism was obtained from soil collected in a river near Shanghai. Taxonomic features indicated that the strain belonged to the genus *Nocardiopsis*. The culture filtrate contained two active components; one was found to be identical with psi-tectorigenin (3), and the other was further purified for structure determination. The active component was isolated and purified as described in the Experimental section and was named pendolmycin [**1**]. Pendolmycin inhibited epidermal-growth-factor (EGF)-induced phosphatidylinositol turnover with an IC₅₀ value of about 1 ng/ml.

Purified pendolmycin was obtained as colorless crystals [mp 124–126°; fdms m/z [M]⁺ 369; [α]D – 154° (c = 0.1, MeOH); uv λ max (ϵ): 214 (11800), 230 (19400), 285 (7900), 298 (7970)]. It is soluble in MeOH, Me₂CO, and CHCl₃ but insoluble in hexane and H₂O. The ir absorption of pendolmycin at 3380 cm⁻¹ and 1655 cm⁻¹ revealed the presence of an amide group. The uv spectrum of pendolmycin resembled the uv spectra of teleocidines and lyngbyatoxin A (2). The ¹H- and ¹³C-nmr spectra of pendolmycin gave doubled signals which could be due to two conformations of the lactam

Proton	Chemical shift ^a
1	8 /8/1H bes)
1	6.46(111, 015)
2	6.84 (IH, brs)
5	6.48(1H, d, J = 8.0 Hz)
6	7.00(1H, d, J = 8.0 Hz)
8a	3.04(1H, dd, J = 4.0 Hz, J = 17.5 Hz)
8b	3.15 (1H, br d, J = 17.5 Hz)
9	4.32(1H, m)
10	7.50(1H, br s)
12	4.34(1H, d, J = 10 Hz)
14a	3.56(1H, br dt, J = 12.0 Hz, J = 3.0 Hz)
14b	3.74(1H, br dt, J = 12.0 Hz, J = 7.0 Hz)
14-OH	3.34(1H, br)
15	2.59(1H, m, J = 7.0 Hz, J = 10.0 Hz)
16	0.65(3H, d, J = 7.0 Hz)
17	0.92(3H, d, J = 7.0 Hz)
18	2.90(3H, s)
20	6.19(1H, dd, J = 11.0 Hz, J = 17.5 Hz)
21a	5.21(1H, dd, J = 1.5 Hz, J = 11.0 Hz)
21b	5.31(1H, dd, J = 1.5 Hz, J = 17.5 Hz)
22	1.47 (3H, s)
23	1.51(3H, s)

TABLE 1. 1 H-nmr Spectrum (400 MHz, CDCl₃) of Pendolmycin [1].

^aChemical shifts in ppm downfield from TMS.

ring as reported in lyngbyatoxin A. The major resonances are listed in Tables 1 and 2. These spectra resemble those of indolactam V (4), having, instead of aromatic protons (δ 6.90 ppm), two methyls (δ 1.47 and 1.51 ppm, each a singlet) and three vinylic protons (δ 5.21, 5.32 and 6.91 ppm) attributable to a 3-methylbutenyl group at C-7. The structure was determined using data generated by long range ¹H-¹³C correlation spectra and nOe experiments, as illustrated in Figure 1. The streeochemistry of pendolmycin was deduced to be 9*S*, 12*S* by comparison of its cd spectrum {[θ]₃₀₃ +8900, [θ]₂₉₄ 0, [θ]₂₄₈ -33000, [θ])₂₂₀ -44000, [θ]₂₁₃ 0 (c = 1.25 × 10⁻³, MeOH) }, recorded on a J20 spectro-polarimeter (Jasco Co.), with that of indolactam V (4).

Journal of Natural Products

Carbon							Chemical shift ^a		
2.									121.1(d)
3.									114.2(s)
3a									118.7 (s)
4.									146.5(s)
5.									106.4(d)
6.									119.1(d)
7.									122.8(s)
7a									137.5(s)
8.									33.9(t)
9.									55.8(d)
11									174.5(s)
12								•	71.1(d)
14									65.1(t)
15									28.6(d)
16									19.6(q)
17									21.6(q)
18									33.1(q)
19									40.1(s)
20									149.5(d)
21									111.3(t)
22									27.2(q)
23	•	•	•	•	•		•	•	26.8 (q)
a	^a Chemical shifts in ppm downfield fro								

TABLE 2.¹³C-nmr Spectrum(100 MHz, CDCl₃) of Pendolmycin [1].

"Chemical shifts in ppm downheld: TMS.

Teleocidin B (5) and pendolmycin² do not inhibit binding of EGF to its receptor in A431 cells. Thus, pendolmycin should not inhibit EGF-induced phosphatidylinositol turnover by inhibiting EGF binding. Teleocidin B and lyngbyatoxin A are known to induce inflammation and tumor promotion in mouse skin (6). Pendolmycin likewise induced erythema in human skin. It showed weak antibacterial activity with the following MIC values: *Staphylococcus aureus* (25 μ g/ml), *Micrococcus luteus* (25 μ g/ml), *Bacillus anthracis* (50 μ g/ml), *Bacillus subtilis* (50 μ g/ml), *Bacillus cereus* (50 μ g/ml),

FIGURE 1. Structure of pendolmycin demonstrated by long range ¹H-¹³C correlation spectrum and nOe. : Long range ¹H-¹³C correlation : NOe

²K. Umezawa et al., manuscript in preparation.

Corynebacterium bovis (50 μ g/ml), Mycobacterium smegmatis (50 μ g/ml), and Klebsiella pneumoniae (100 μ g/ml).

Both teleocidin B [2] and lyngbyatoxin A [3] contain two isoprene units on the indolactam structure, while pendolmycin [1] carries only one such unit. Indolactams without an isoprene unit have also been isolated from actinomycetes (7). Therefore, it is possible that pendolmycin is a biosynthetic intermediate of teleocidin B and lyngbyatoxin A.

EXPERIMENTAL

ISOLATION.—*Nocardiopsis* strain SA1715 has been deposited with the Fermentation Research Institute of the Agency of Industrial Science and Technology, Tsukuba, Japan under the collection number FERM P-10278. The organism was cultured in a 500-ml Erlenmeyer flask containing 110 ml of a medium consisting of 2% sucrose, 1% corn steep liquor, and 0.4% CaCO₃ in 2-fold diluted artificial sea water (Jamarin Laboratory), pH 7.4, on a rotary shaker at 27° for 2 days. Then, 3.0 ml of the cultured broth was inoculated into a 500-ml flask containing 110 ml of the same medium. The fermentation (36 liters) was carried out at 27° for 4 days. The broth filtrate was extracted with an equal volume of EtOAc, and the mycelial cake was extracted with Me₂CO. The Me₂CO extract was dried, dissolved in H₂O, and extracted with EtOAc. The EtOAc extracts were combined and concentrated in vacuo. The dried material was applied to a Si gel column (40 × 100 mm), and the active fraction was eluted with CHCl₃-MeOH (100:1). The eluate was dried to give a yellow powder (81.6 mg), which was dissolved in MeOH and applied to a Toyopearl HW-40 column (50 × 100 mm) to obtain purified material (40.8 mg). Further purification was carried out using reversed-phase hplc (Nucleosil ${}_{5}C_{18}$, Nagel, 20 × 300 mm) with 50% MeCN/H₂O as eluent, yielding 8.8 mg of pendolmycin [1].

PHOSPHATIDYLINOSITOL TURNOVER ASSAY.—Human epidermoid carcinoma A431 cells $(3 \times 10^5$ cells) pre-labeled with ³H-myoinositol (1 µCi) for 30 min were incubated in Hepes-buffered saline (HBS) at 37° with samples and EGF (400 ng/ml) for 60 min (8). The medium was then removed, and 0.5 ml of 10% trichloroacetic acid (TCA) containing 0.01 M sodium pyrophosphate was added to the cells. Thereafter, the adherent cells were washed 3 times with ice-cold TCA solution and the residue dissolved in 0.5 N NaOH. Finally, TCA-insoluble radioactivity was determined in a liquid scintillation counter.

ACKNOWLEDGMENTS

This work was partially supported by a grant-in-aid for New Drug Development Research from the Ministry of Health and Welfare, Japan.

LITERATURE CITED

- 1. M. Takashima and H. Sakai, Bull. Agric. Chem. Soc. Jpn., 24, 647 (1960).
- 2. J.H. Cardellina II, F.-J. Marner, and R.E. Moore, Science, 204, 193 (1979).
- 3. M. Imoto, T. Yamashita, T. Sawa, S. Kurasawa, H. Naganawa, T. Takeuchi, B.-Q. Zhu, and K. Umezawa, *FEBS Lett.*, 230, 43 (1988).
- 4. Y. Endo, K. Shudo, K. Furuhata, H. Ogura, S. Sasaki, N. Aimi, Y. Hitotsuyanagi, and Y. Koyama, Chem. Pharm. Bull., **32**, 358 (1984).
- 5. B. Friedman, A.R. Frackelton, Jr., A.H. Ross, J.M. Connors, H. Fujiki, T. Sugimura, and M.R. Rosner, Proc. Natl. Acad. Sci. USA, 81, 3034 (1984).
- 6. H. Fujiki and T. Sugimura, Adv. Cancer Res., 49, 699 (1987).
- K. Irie, M. Hirota, N. Hagiwara, K. Koshimuzu, H. Hayashi, S. Murao, H. Tokuda, and Y. Ito, Agric. Biol. Chem., 48, 1269 (1984).
- 8. S.T. Sawyer and S. Cohen, Biochemistry, 20, 6280 (1981).

Received 25 April 1988